Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 2004-2015, 2021.
Article in English | WPRIM | ID: wpr-888848

ABSTRACT

Hepatocellular carcinoma (HCC) has been known as the second common leading cancer worldwide, as it responds poorly to both chemotherapy and medication. Triptolide (TP), a diterpenoid triepoxide, is a promising treatment agent for its effective anticancer effect on multiple cancers including HCC. However, its clinical application has been limited owing to its severe systemic toxicities, low solubility, and fast elimination in the body. Therefore, to overcome the above obstacles, photo-activatable liposomes (LP) integrated with both photosensitizer Ce6 and chemotherapeutic drug TP (TP/Ce6-LP) was designed in the pursuit of controlled drug release and synergetic photodynamic therapy in HCC therapy. The TP encapsulated in liposomes accumulated to the tumor site due to the enhanced permeability and retention (EPR) effect. Under laser irradiation, the photosensitizer Ce6 generated reactive oxygen species (ROS) and further oxidized the unsaturated phospholipids. In this way, the liposomes were destroyed to release TP. TP/Ce6-LP with NIR laser irradiation (TP/Ce6-LP+L) showed the best anti-tumor effect both

2.
Acta Pharmaceutica Sinica B ; (6): 3244-3261, 2021.
Article in English | WPRIM | ID: wpr-922791

ABSTRACT

Major challenges for cancer treatment are how to effectively eliminate primary tumor and sufficiently induce immunogenic cell death (ICD) to provoke a robust immune response for metastasis control. Here, a self-assembled cascade bioreactor was developed to improve cancer treatment with enhanced tumor penetration and synergistic therapy of starvation, chemodynamic (CDT) and photothermal therapy. Ultrasmall FeS-GOx nanodots were synthesized with glucose oxidase (GOx) as template and induced by paclitaxel (PTX) to form self-assembling FeS-GOx@PTX (FGP)

3.
Acta Pharmaceutica Sinica B ; (6): 2171-2182, 2020.
Article in English | WPRIM | ID: wpr-881104

ABSTRACT

Primary bile acids were reported to augment secretion of chemokine (C‒X‒C motif) ligand 16 (CXCL16) from liver sinusoidal endothelial cells (LSECs) and trigger natural killer T (NKT) cell-based immunotherapy for liver cancer. However, abundant expression of receptors for primary bile acids across the gastrointestinal tract overwhelms the possibility of using agonists against these receptors for liver cancer control. Taking advantage of the intrinsic property of LSECs in capturing circulating nanoparticles in the circulation, we proposed a strategy using nanoemulsion-loaded obeticholic acid (OCA), a clinically approved selective farnesoid X receptor (FXR) agonist, for precisely manipulating LSECs for triggering NKT cell-mediated liver cancer immunotherapy. The OCA-nanoemulsion (OCA-NE) was prepared

4.
Acta Pharmaceutica Sinica B ; (6): 421-432, 2019.
Article in English | WPRIM | ID: wpr-774977

ABSTRACT

Prodrug nanoassemblies, which can refrain from large excipients, achieve higher drug loading and control drug release, have been placed as the priority in drug delivery system. Reasoning that glutathione (GSH) and reactive oxygen species (ROS) are highly upgraded in tumor tissues which makes them attractive targets for drug delivery system, we designed and synthetized a novel prodrug which utilized mono thioether bond as a linker to bridge linoleic acid (LA) and docetaxel (DTX). This mono thioether-linked conjugates (DTX-S-LA) could self-assemble into nanoparticles without the aid of much excipients. The mono thioether endowed the nanoparticles redox sensitivity resulting in specific release at the tumor tissue. Our studies demonstrated that the nanoassemblies had uniform particle size, high stability and fast release behavior. DTX-S-LA nanoassemblies outperformed DTX solution in pharmacokinetic profiles for it had longer circulation time and higher area under curve (AUC). Compared with DTX solution, the redox dual-responsive nanoassemblies had comparable cytotoxic activity. Besides, the antitumor efficacy was evaluated in mice bearing 4T1 xenograft. It turned out this nanoassemblies could enhance anticancer efficacy by increasing the dose because of higher tolerance. Overall, these results indicated that the redox sensitivity nanoassemblies may have a great potential to cancer therapy.

5.
Acta Pharmaceutica Sinica B ; (6): 923-936, 2019.
Article in English | WPRIM | ID: wpr-774933

ABSTRACT

It is critical to regulate the senescence-associated secretory phenotype (SASP) due to its effect on promoting malignant phenotypes and limiting the efficiency of cancer therapy. In this study, we demonstrated that marchantin M (Mar-M, a naturally occurring bisbibenzyl) suppressed pro-inflammatory SASP components which were elevated in chemotherapy-resistant cells. Mar-M treatment attenuated the pro-tumorigenic effects of SASP and enhanced survival in drug-resistant mouse models. No toxicity was detected on normal fibroblast cells or in animals following this treatment. Inactivation of transcription factor EB (TFEB) and nuclear factor-B (NF-B) by Mar-M significantly accounted for its suppression on the components of SASP. Furthermore, inhibition of SASP by Mar-M contributed to a synergistic effect during co-treatment with doxorubicin to lower toxicity and enhance antitumor efficacy. Thus, chemotherapy-driven pro-inflammatory activity, seen to contribute to drug-resistance, is an important target for Mar-M. By decreasing SASP, Mar-M may be a potential approach to overcome tumor malignancy.

6.
Acta Pharmaceutica Sinica B ; (6): 986-996, 2019.
Article in English | WPRIM | ID: wpr-774928

ABSTRACT

Imipenem is a carbapenem antibiotic. However, Imipenem could not be marketed owing to its instability and nephrotoxicity until cilastatin, an inhibitor of renal dehydropeptidase-I (DHP-I), was developed. In present study, the potential roles of renal organic anion transporters (OATs) in alleviating the nephrotoxicity of imipenem by cilastatin were investigated and in rabbits. Our results indicated that imipenem and cilastatin were substrates of hOAT1 and hOAT3. Cilastatin inhibited hOAT1/3-mediated transport of imipenem with IC values comparable to the clinical concentration, suggesting the potential to cause a clinical drug-drug interaction (DDI). Moreover, imipenem exhibited hOAT1/3-dependent cytotoxicity, which was alleviated by cilastatin and probenecid. Furthermore, cilastatin and probenecid ameliorated imipenem-induced rabbit acute kidney injury, and reduced the renal secretion of imipenem. Cilastatin and probenecid inhibited intracellular accumulation of imipenem and sequentially decreased the nephrocyte toxicity in rabbit primary proximal tubule cells. Renal OATs, besides DHP-I, was also the target of interaction between imipenem and cilastatin, and contributed to the nephrotoxicity of imipenem. This therefore gives in part the explanation about the mechanism by which cilastatin protected against imipenem-induced nephrotoxicity. Thus, OATs can potentially be used as a therapeutic target to avoid the renal adverse reaction of imipenem in clinic.

SELECTION OF CITATIONS
SEARCH DETAIL